Microshell Arrays Enhanced Sensitivity in Detection of Specific Antibody for Reduced Graphene Oxide Optical Sensor
نویسندگان
چکیده
Protein-protein interactions play an important role in the investigation of biomolecules. In this paper, we reported on the use of a reduced graphene oxide microshell (RGOM)-based optical biosensor for the determination of goat anti-rabbit IgG. The biosensor was prepared through a self-assembly of monolayers of monodisperse polystyrene microspheres, combined with a high-temperature reduction, in order to decorate the RGOM with rabbit IgG. The periodic microshells allowed a simpler functionalization and modification of RGOM with bioreceptor units, than reduced graphene oxide (RGO). With additional antibody-antigen binding, the RGOM-based biosensor achieved better real-time and label-free detection. The RGOM-based biosensor presented a more satisfactory response to goat anti-rabbit IgG than the RGO-based biosensor. This method is promising for immobilizing biomolecules on graphene surfaces and for the fabrication of biosensors with enhanced sensitivity.
منابع مشابه
Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملGraphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases
In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملElectrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode
The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...
متن کامل